首页> 外文OA文献 >Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution
【2h】

Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution

机译:从马尔可夫链计算贝叶斯因子蒙特卡罗模拟后验分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computation of the marginal likelihood from a simulated posterior distribution is central to Bayesian model selection but is computationally difficult. I argue that the marginal likelihood can be reliably computed from a posterior sample by careful attention to the numerics of the probability integral. Posing the expression for the marginal likelihood as a Lebesgue integral, we may convert the harmonic mean approximation from a sample statistic to a quadrature rule. As a quadrature, the harmonic mean approximation suffers from enormous truncation error as consequence . In addition, I demonstrate that the integral expression for the harmonic-mean approximation converges slowly at best for high-dimensional problems with uninformative prior distributions. These observations lead to two computationally-modest families of quadrature algorithms that use the full generality sample posterior but without the instability. The first algorithm automatically eliminates the part of the sample that contributes large truncation error. The second algorithm uses the posterior sample to assign probability to a partition of the sample space and performs the marginal likelihood integral directly. This eliminates convergence issues. The first algorithm is analogous to standard quadrature but can only be applied for convergent problems. The second is a hybrid of cubature: it uses the posterior to discover and tessellate the subset of that sample space was explored and uses quantiles to compute a representive field value. Neither algorithm makes strong assumptions about the shape of the posterior distribution and neither is sensitive outliers. [abridged]
机译:从模拟的后验分布计算边缘似然性是贝叶斯模型选择的核心,但计算困难。我认为,通过仔细关注概率积分的数值,可以从后验样本可靠地计算出边际可能性。将边际可能性的表达式表示为Lebesgue积分,我们可以将谐波平均近似值从样本统计量转换为正交规则。作为一个正交,谐波均值逼近因此遭受巨大的截断误差。另外,我证明了谐波均值近似的积分表达式对于先验分布不合理的高维问题充其量只能缓慢收敛。这些观察结果导致两个计算适度的正交算法系列,它们使用后验的完全通用样本,但没有不稳定性。第一种算法会自动消除造成较大截断误差的样本部分。第二种算法使用后验样本将概率分配给样本空间的一部分,并直接执行边际似然积分。这消除了收敛问题。第一种算法类似于标准正交算法,但只能用于收敛问题。第二个是孵化器的混合体:它使用后验来发现和细分已探索的样本空间的子集,并使用分位数来计算代表性字段值。两种算法都没有对后验分布的形状做出强有力的假设,也不是敏感的离群值。 [简略]

著录项

  • 作者

    Weinberg, Martin;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号